

A Standardized Digital Well-Record Database for the Glaciated U.S.

Randy Bayless and Les Arihood

U.S. Geological Survey, Indiana Water Science Center, Indianapolis, IN Howard Reeves

U.S. Geological Survey, Michigan Water Science Center, Lansing, MI Randy Ulery and Gary Martin

U.S. Geological Survey, Kentucky Water Science Center, Louisville, KY

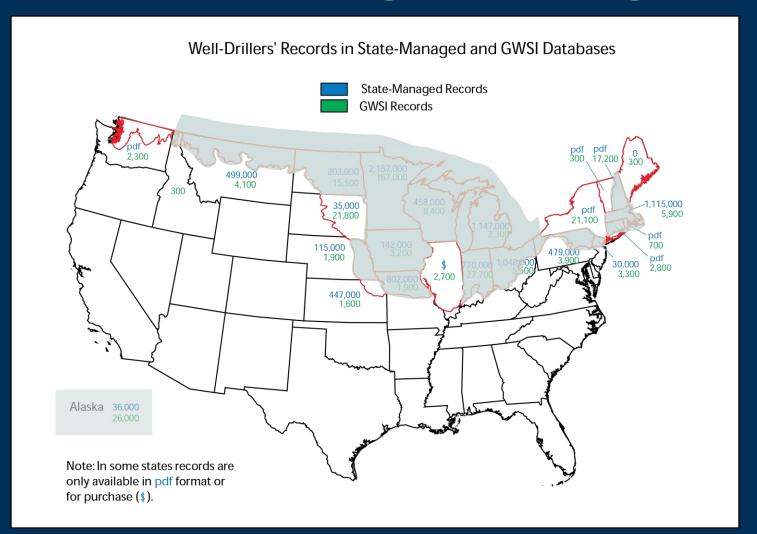
Background

- Arc Macro Language (AML) programs were developed by Les Arihood
- The AMLs were used to build several groundwater models

Arihood, L.D. 2008. Processing, analysis, and general evaluation of well-driller Logs for estimating hydrogeologic parameters of the glacial sediments in a ground-water flow model of the Lake Michigan basin: USGS SIR 2008-5184.

Project Goals

- Create a sanitized and standardized database of digital well records for the glaciated U.S.
- Create Arc grid maps of
 - Total unconsolidated thickness
 - Total sand and gravel thickness
 - Horizontal hydraulic conductivity
 - Vertical hydraulic conductivity
 - Transmissivity
 - First Water



Databases

	Well-Drillers' Records			Well-Drillers' Records	
	GWSI	State		GWSI	State
State	Records	Records	State	Records	Records
Alaska	26,620_	36,203	Nebraska	1,923	115,980
Connecticut	2,865		New Hampshire	17,221	0
Idaho	355	229,944	New Jersey	3,323	30,275
Illinois	2,700		New York	21,192	
Indiana	27,794	770,000	North Dakota	15,533	203,044
Iowa	3,275	142,626	Ohio	5,512	2,246,000
Kansas	1,604	447,508	Pennsylvania	3,957	479,626
Massachusetts	5,941	1,115,237	Rhode Island	784	
Maine	387	0	South Dakota	21,879	
Michigan	2,393	1,147,000	Vermont	351	0
Minnesota	167,847	2,157,441	Washington	2,380	
Missouri	1,931	802,216	Wisconsin	8,404	458,875
Montana	4,160	499,519	TOTAL	247,872	11,111,438
			Available for purcha		

Anticipated Lithologic Coverage

General Info and Lithologic Files

General Well-Record Information

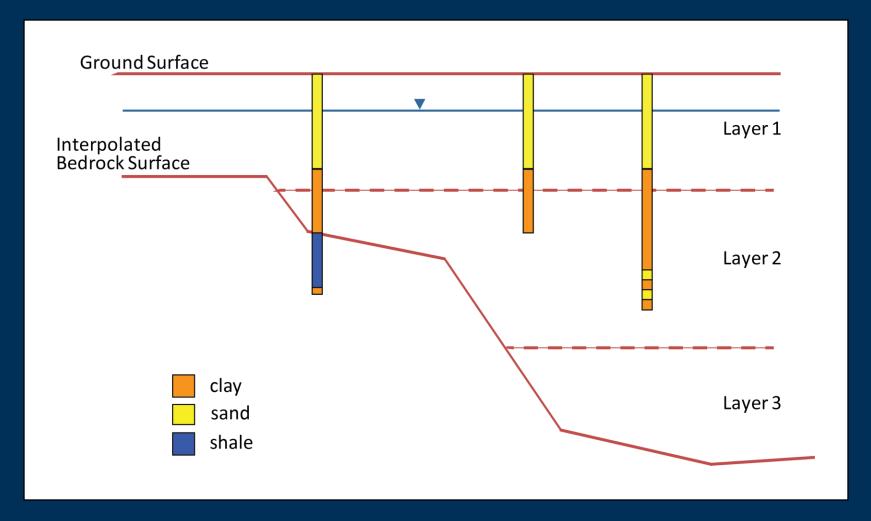
Site ID
Location
Land-Surface
Elevation
Water-Table Elevation
Construction Date
Well Construction
Pump Test
Intended Use

Lithologic Information

Site ID
Interval Tops
Interval Bottoms
Lithologies

Generalized Procedure

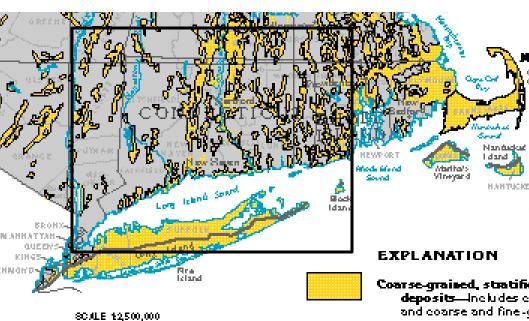
Convert Well-**Compute Total** Sand & Gravel Acquire Logs **Drillers Descriptions** to GWSI **Thickness** Remove Incomplete Assign 'Coarse' / Estimate Kh, Kz, & Records 'Fine' Compute K from Remove Lithologic Reformat Records **Specific Capacity** Illogical Records Data Remove Poorly **Estimate Total** Krig and Map the Located Records Thickness Hydraulic Properties



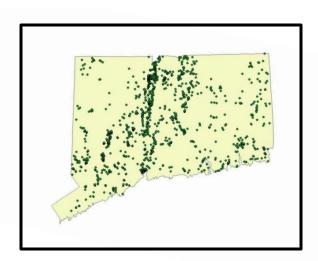
Translating and Standardizing

Driller's Description	Interpreted GWSI Lithology	
sand and gravel	SDGL	
S&G	SDGL	
sand and grvl	SDGL	
grey sand gravel	SDGL	
grey sand gravel clay	SGVC	
grey sand gravel clay and silt	SGVC	
clay with silt sand and gravel	CLSD	

Common Situations


Quality Evaluations

- Groundwater Atlas of the U.S.
 - [http://pubs.usgs.gov/ha/ha730/]
- Widely Recognized Maps
- Bedrock surface by D. Soller
- Bedrock surface by Williston Study Group
- Ohio county study of aquifer transmissivity distribution based on county geology maps.


Fig. 9 Major Aquifers USGS HA 730-M

Well sites in the Standardized Well-Record Database

100 MILES

M9

Coarse-grained, stratified outwash and ice-contact deposits—Includes coarse-grained glacial lake sediment and coarse and fine-grained alluvium

Fine-grained and unstratified glacial deposits—hicludes glacial till and fine-grained glacial lake sediment. Glacial deposits locally thin or missing

Southern limit of glaciation

Boundary of example area discussed later in this chapter and page number

100 KILOMETERS

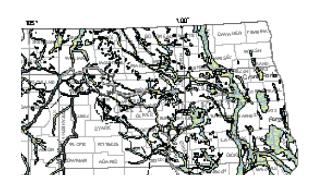
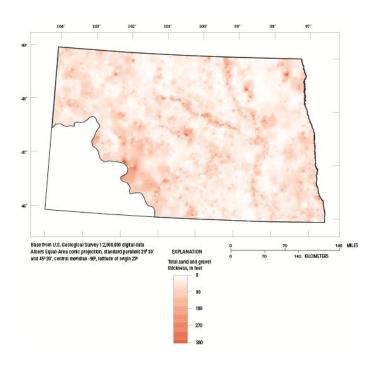



Fig. 25 Unconsolidated Aquifers USGS HA 730-I

Sand and Gravel Thickness Well-Record Database

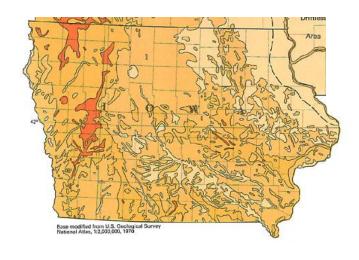
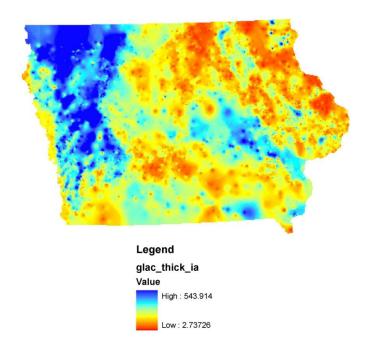
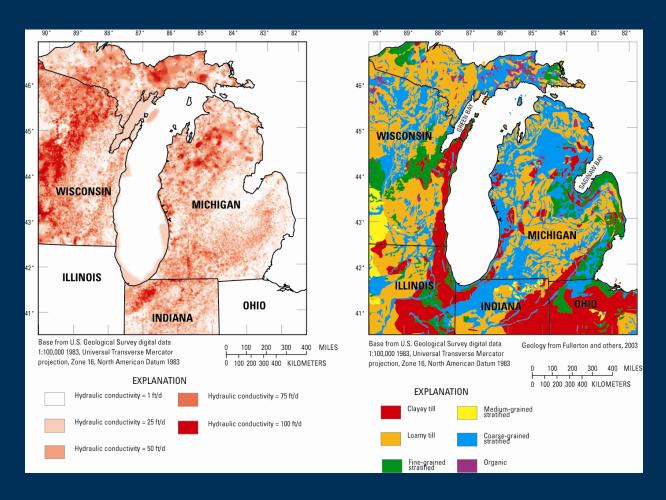
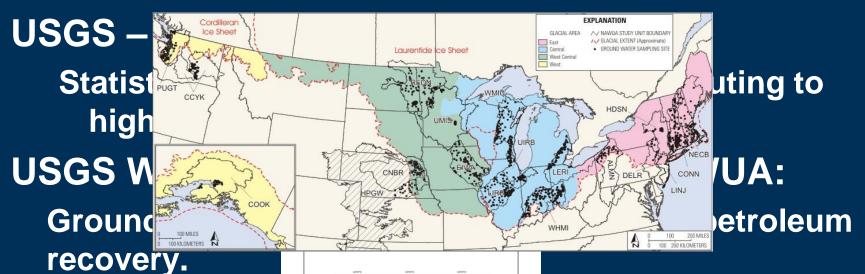




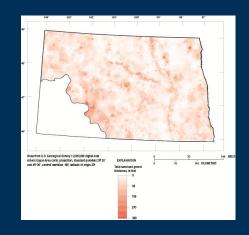
Fig. 30 Unconsolidated Thickness USGS HA 730-K

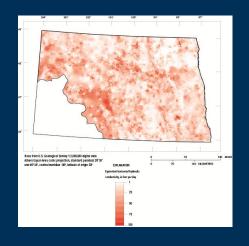

Unconsolidated Thickness Well-Record Database

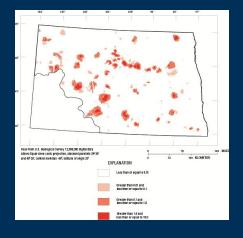


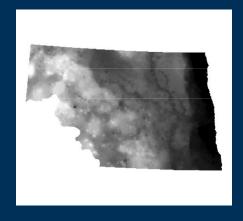
Concurrent Applications

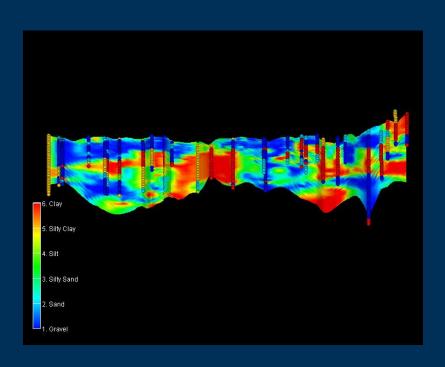
National Water-Water quality glaciated U.S




sment: on of the




Anticipated Products


Total unconsolidated thickness
Total sand and gravel thickness
Relative horizontal K
Relative vertical K
Specific capacity horizontal K
Aquifer transmissivity
First Water
Bedrock Surface

Anticipated Products

Web served:

- Report
- Database
- Maps
- Interactive
- Storage
- Water-use

Final Remarks

- Map products are for large scale projects
- Database will be useful for small scale efforts
- Comments welcome!

