Using Technology to Measure the Unreachable: Digital 3-D Outcrop Characterization using Close-Range Photogrammetry, Terrestrial Laser Scanning and Remote Sensing.

<u>Christopher Stohr</u>, Justine Petras, Andrew Stumpf, Barbara Stiff, Jason Thomason, Donald Mikulic, Steven Brown, Donald Keefer, and Jennifer Carrel

Illinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign.

Funding for field work provided in part by the Metropolitan Water Reclamation District of Greater Chicago and MWH, Inc.

Surveying instruments provided courtesy of Prof. James Best, UIUC & IDOT.

Other support from Sirovision, Optech, Middle Fork F&W Area,

Field study siteGr. Lakes Geologic Mapping Coalition

January 15, 2013

ILLINOIS STATE GEOLOGICAL SURVEY PRAIRIE RESEARCH INSTITUTE

Why new geologic maps?

- Previous <u>surficial</u> maps were made with data & technology available at the time.
- Society now wants detailed information for natural resources (aggregate, groundwater, energy, ...), planning, and avoid environmental and natural hazards.
- 3D maps are needed for these purposes, but how to get 3D information for models?

Why new geologic maps?

- Previous <u>surficial</u> maps were made with data & technology available at the time.
- Society has advanced and wants detailed information for natural resources (groundwater, aggregates, energy, ...), planning, and avoid environmental and natural hazards.
- 3D maps are needed for these purposes, but how to get 3D information for models?

Obstacles to 3D modeling

- Connect dots or construct geology?
- Estimate occurrence or probability?
- Guess dimensions or measure?

How to obtain numerical data?

Outcrop observations and measurements

- 2-D outcrops = high detail and unit context <u>where accessible</u>.
- Better than 1-D borings because
 geometry + spatial dimensions
 changes in properties/character of units (needed for groundwater and natural resource models)

But! 2-D outcrop data not usually compiled into 3-D models.

Three technologies for georeferenced outcrop measurements and 3D data

close range photogrammetry

- No technique is 'perfect'
- None works everywhere
- None provides all data
- None simple to use
- All based upon satellite & transit surveying

GPS + transit instruments courtesy Jim Best

Three technologies for georeferenced outcrop measurements and 3D data

close range photogrammetry

Outcrop close-range photogrammetry field setup

Unrectified photograph

- Rectangular
- Square corners

Orthorectified photograph

- Trapezoidal shape
- Corners are not square
- Geometrically correct

🕗 Siro 3D V 3. 3

Program/File 3D Imaging 3D Support Image Support 3D Applications Help

WS6_c.tif Easting: 350658.061 Northing: 4586559.107 Height: 182.652 Bearing: 177.43 deg Elevation: 0.85deg Tilt: -3.45deg WS2_c.tif Easting: 350657.174 Northing: 4586558.697 Height: 182.682 Bearing: 170.45 deg Elevation: -0.01 deg Tilt: -3.84deg

Surveyed Control Point Position: 350658.131 4586554.929 182.097 Calculated Control Point Position: 350658.131 4586554.928 182.097 Control Point Range: 4.215 Average Selected Point Position RMS Error: 0.005 0.121%

Note the offset of upper and lower sections of outcrop face offset by a 4-foot deep excavation.

> Orthorectified image has <u>no</u> <u>radial displacement</u>or optical errors.

4586561.5

4586562

4586561

350473

350478

350479

350480

East

350481

350482

350483

Thorn Creek stormwater storage

Surveying control and check points in field. Record on photomosiac.

CS 6

CS 7

CS 8

CS 9

CS 10

CS 11 CS 12

570

760

Feet

520 - 710 feet

190

95

380

DEM extracted from the stereomodel by Sirovision Multiple point clouds displayed in ArcScene

Good relative orientation

Measurements of Thornton Quarry N-S wall by Sirovision

Excellent geometry and results under difficult measurement conditions.
 Joint orientation compares with previous results

Thornton Quarry (Silurian reef) aggregate & hydrocarbon reservoir

•jointing

- nearly all are closed
- nearly all vertical
- length = 20-40 feet
- spacing 10-50; 100-200 feet

• 16 conduits

- 2-foot avg opening, a 6 ft diameter
- change in bedding angle (apparent)
 - 2 to 41 degrees

•continuity of bedding pairs

- not as continuous as you think*
- avg 56 feet, 20 to 115 feet in length
- 0.4-1.2 feet thick pairs

image resolution = 37 millimeters

N = 44Maximum density = 8.97 Minimum density = 0.00Mean density = 2.10Density calculation: Cosine sums Cosine exponent = 20Contour intervals = 10 From minimum to maximum

Comparison of reduced data shows that **D/DDN** nearly same as conventional field methods.

Average strike of permal joints

Stereo32, Unregistered Version

Equal area projection, lower hemisphere

	Average sinke of normal joints					
			Angle			
			between			
Study	Set I	Set II	joints			
Foote 1982, east site	N49° E	N36° W	75-87			
Djavid and Fitzpatrick 2008	N48° E	N46° W	92			
Shuri and Kelsay 1984	N45° E	N45° W	90			
Harza Engineering	N42° E	N34° W				
Company 1986			76			
STS Consultants, Ltd.	N41.1° E	S44.5° E	85.6			
	Eigenvector	Eigenvector				
		1.5.5				
This study, joint sets	N52.1° E	N50.4°W	102.5			
This study, fracture	N0.30° E					

Middle Fork Vermilion River

- 3D modeling for Mahomet
 Aquifer project
- New instrument
 - Compare techniques
- No nearby survey control
- Site inaccessible in high water (spring)
- Lots of riparian vegetation
 - Mostly poison ivy

Vegetation obscured outcrop. Not suited to stereophotography for photogrammetry or lidar without extensive preparation.

ermi

Porter Cemetry

Forkot

Survey Control Point

0 80 160 320 480	640
	Meter

Boulder pavement in Tiskilwa, Blue Hole site

Distance Between Boulders w/in Cluster

• 4 of 59 boulders > 3m apart

- X = 1.2m; s = 0.1m
- each boulder cluster deposited same time.

Clusters are not close. 6 of 15 clusters < 9m apart clusters are separated, perhaps as events. Stream channels cut into Glasford Fm at three (3) outcrops Middle Fork Vermilion River

58.4 feet (17.8 m)

feet (16.1

2.8

6000 000 0

Yorkville Member, Lemont Formation

Batestown Member, Lemont Formation

Unnamed unit 1, Glasford Formation (sand)

and the Party

Tiskilwa Formation

Tiskilwa Formation

Unnamed unit 1, Glasford Formation

(diamicton)

THE VALUE AND

Vandalia Member, Glasford Formation

Unnamed unit 1? Glasford Formation (silty sand with organic matter)

0 000 0

Unnamed unit 1, Glasford Formation (silt and clay)

Unnamed unit 1, Glasford Formation (sand)

Unnamed unit 1, Glasford Formation (diamicton)

Yorkville Member, Lemont Formation

Batestown Member, Lemont Formation

Vandalia Member, Glasford Formation

Yorkville Member, Lemont Formation Batestown Member, Lemont Formation 53.2 feet (16.2 m) **Tiskilwa Formation** Unnamed unit 1 Unnamed unit 1, Glasford Formatio Unnamed unit 1, **Glasford Formation** Unnamed unit 1, **Glasford Formation** ر(sand) **Glasford Formation** (diamicton) (diamicton) Unnamed unit 1. Vandalia Member, Glasford Formation **Glasford Formation** (sand) - With Prices

Measurements of channels developed in Glasford Fm. along the Middle Fork Vermilion R.

Location	Width, m	% length	Area, sq m	Thickness, m
Blue Hole, North	23.1	32	32.6	4.2
Blue Hole, South	21.2	30	21.9	3.7
Higginsville	24.9	55	19.8	3.3
Porter Cemetery	35.6	43	49	6.6
BH Combined	44.3	63		
Mean	26.2	40.25	30.825	4.45
Standard Error	3.22	5.65	6.68	0.74
Median	24	38	27.25	3.95
Standard Deviation	6.45	11.30	13.35	1.48
Sample Variance	41.55	127.58	178.23	2.19
Range	14.4	25	29.2	3.3
Minimum	21.2	30	19.8	3.3
Maximum	35.6	55	49	6.6

Maximum channel thicknesses ranges between ~3.3 – 6.6 meters.

Channel lengths range 43-62% of outcrop length so, likelihood of encountering sand in Glasford Fm. is ~50%.

So, lateral borings could improve well capacity or yield.

Measurements of channels developed in Glasford Fm. along the Middle Fork Vermilion R.

Location	Width, m	% length	Area, sq m	Thickness, m
Blue Hole, North	23.1	32	32.6	4.2
Blue Hole, South	21.2	30	21.9	3.7
Higginsville	24.9	55	19.8	3.3
Porter Cemetery	35.6	43	49	6.6
BH Combined	44.3	63		
Mean	26.2	40.25	30.825	4.45
Standard Error	3.22	5.65	6.68	0.74
Median	24	38	27.25	3.95
Standard Deviation	6.45	11.30	13.35	1.48
Sample Variance	41.55	127.58	178.23	2.19
Range	14.4	25	29.2	3.3
Minimum	21.2	30	19.8	3.3
Maximum	35.6	55	49	6.6

- Probability of channel occurrence in an outcrop is ~50%
- Lithologic, conductivity variability in several tills.
- Variability of hydraulic conductivity, k does not appear large
- Well capacity or yield likely depends upon length of buried channels & interconnectivity. So, are shapes or areas of channel cuts important?

Challenges the notion that "sand lenses" in glacial sediments are hit or miss.

- Challenges the "unpredictable" character of glacial sediments.
- Converts observations (what we 'knew') to measurable phenomena.

New challenge is that this places a burden on earth scientists to reliably predict occurrence, areas, and dimensions of sediments.

Image Processing and Remote Sensing of Visible and Infrared Imagery

- Enhancement e.g., histogram stretch
- Band ratios enhance Fe oxidation and mineralogy
- Statistical Analysis e.g., unsupervised classification
- Direct Detection or Indication hyperspectral, thermal

no enhancement

Curve Display Options

Image processing: ratio **red** and **green** bands to distinguish oxidized and unoxidized sediments.

Red/Green = <u>R - G</u> R + G

								5.		
File	Edit	<u>H</u> elp								
ê	D		77 🖻	6	6	Layer N	Number: 1	÷		
Rov	N	Color	Rec	ł	Green	Blue	Class Names	Jpaciti	Histogram	
	0			0	0	0	Unclassified	0	70529	
	1			0	1	0	Class 1	1	175709	1
	2		0	.16	0.14	0.13	Class 2	1	326160	1
	3			1	0.65	0	Class 3	1	289135	1
	4		0	.19	0.22	0.27	Class 4	1	337841	1
	5		0	.93	0.51	0.93	Class 5	1	423200	1
	6		0	.39	0.24	0.11	Class 6	1	145127	
	7		0	.31	0.35	0.39	Class 7	1	352967	1
	8			1	0.65	0	Class 8	1	336554	1
	9			1	0.65	0	Class 9	1	258197	1
	10		0	.37	0.38	0.39	Class 10	1	239612	1
	11		0	.93	0.51	0.93	Class 11	1	267775	1
	12			1	1	0	Class 12	1	87343	1
	13		0	.44	0.44	0.42	Class 13	1	217573	1
	14			0.4	0.44	0.5	Class 14	1	247055	1
	15		0	46	0.47	0.49	Class 15	1	226571	1
	16		0	.83	0.83	0.83	Class 16	1	224860	1
	17		0	.83	0.83	0.83	Class 17	1	245356	1
	18			1	0	0	Class 18	1	278130	1
	19		0	.83	0.83	0.83	Class 19	1	121770	1
	20			1	0	0	Class 20	1	401877	
	21		0	.83	0.83	0.83	Class 21	1	331281	
	22			1	0	0	Class 22	1	524383	
	23		0	.83	0.83	0.83	Class 23	1	287663	1
	24			1	0	0	Class 24	1	378390	1
	25			1	0	0	Class 25	1	151399	

oxidized diamicton silty clay

unoxidized diamicton silt clay loam

oxidized fluvial sand and gravel

unoxidized lake sediments

unoxidized diamicton loam

Imaging Spectroscopy (hyperspectral)

Dealing with imperfect conditions – band ratio **Band1/Band2**

Remotely! Expediently! Virtually, and Cheaply!

- <u>Georeference & measure</u> [modeling] subtle changes in lithology and texture;
- •*Differentiate* zones & facies [sedimentology] within 'homogenous' units based on mineralogy;
- *Identify* moisture-density/texture [engineering] using nonvisible imagery;
- *Better utilize* expensive laboratory analyses [cost] extrapolate and target sampling and lab test data;
- *Virtual preservation* [conservation, travel costs] of ephemeral outcrops and type sections.

Spring Lake Sand Pit in McHenry Co.

